Search results for "Negative ions"
showing 7 items of 7 documents
Multiconfigurational second-order perturbation study of the decomposition of the radical anion of nitromethane
2004
The doublet potential energy surfaces involved in the decomposition of the nitromethane radical anion (CH(3)NO(2) (-)) have been studied by using the multistate extension of the multiconfigurational second-order perturbation method (MS-CASPT2) in conjunction with large atomic natural orbital-type basis sets. A very low energy barrier is found for the decomposition reaction: CH(3)NO(2) (-)--[CH(3)NO(2)](-)--CH(3)+NO(2) (-). No evidence has been obtained on the existence of an isomerization channel leading to the initial formation of the methylnitrite anion (CH(3)ONO(-)) which, in a subsequent reaction, would yield nitric oxide (NO). In contrast, it is suggested that NO is formed through the …
Low-temperature molecular layer deposition using monifunctional aromatic precursors and ozone-based ring-opening reactions
2017
Molecular layer deposition (MLD) is an increasingly used deposition technique for producing thin coatings consisting of purely organic or hybrid inorganic-organic materials. When organic materials are prepared, low deposition temperatures are often required to avoid decomposition, thus causing problems with low vapor pressure precursors. Monofunctional compounds have higher vapor pressures than traditional bi- or trifunctional MLD precursors, but do not offer the required functional groups for continuing the MLD growth in subsequent deposition cycles. In this study, we have used high vapor pressure monofunctional aromatic precursors in combination with ozone-triggered ring-opening reactions…
Magnetic exchange interaction in a pair of orbitally degenerate ions: Magnetic anisotropy of [Ti2Cl9]−3
2001
The theory of the kinetic exchange in a pair of orbitally degenerate ions developed by the authors [J. Phys. Chem. A 102, 200 (1998)] is applied to the case of face-shared bioctahedral dimer (overall D3h-symmetry). The effective kinetic exchange Hamiltonian is found for a 2T2–2T2 system taking into account all relevant transfer pathways and charge-transfer crystal field states. The influence of different transfer integrals involved in the kinetic exchange on the energy pattern and magnetic properties of the system is examined. The role of other related interactions (trigonal crystal field, spin–orbit coupling) is also discussed in detail. Using the pseudoangular momentum representation and …
A quantum mechanics-molecular mechanics study of dissociative electron transfer : The methylchloride radical anion in aqueous solution
2002
The dissociative electron transfer reaction CH3Cl+e−→CH3•+Cl− in aqueous solution is studied by using a QM/MM method. In this work the quantum subsystem (a methylchloride molecule plus an electron) is described using density functional theory while the solvent (300 water molecules) is described using the TIP3P classical potential. By means of molecular dynamics simulations and the thermodynamic integration technique we obtained the potential of mean force (PMF) for the carbon–chlorine bond dissociation of the neutral and radical anion species. Combining these two free energy curves we found a quadratic dependence of the activation free energy on the reaction free energy in agreement with Ma…
A two-dimensional magnetic architecture with bridging polynitrile and 2,2′-bipyrimidine ligands
2004
cited By 7; International audience; A new polymeric, two-dimensional compound [Co2(bpym)(dcne) 4 (H2O)2] (1) (dcne = [(CN)2CC(O) OEt)]- = 2,2-dicyano-1-ethoxyethenolate anion and bpym = 2,2'-bipyrimidine) has been synthesized and characterized by X-ray crystallography. The structure is monoclinic space group P21/a and consists of two-dimensional networks of octahedrally coordinated Co(II) ions, bridged by bis-bidentate 2,2'-bipyrimidine and μ2-dcne anions. Magnetic measurements revealed a broad maximum in the xm vs T plot at 20 K which is characteristic of antiferromagnetic exchange between the high spin cobalt(II) centres. © EDP Sciences.
Carbon nanotubes embedded in a polyimide foil for proton acceleration with a sub-ns laser
2021
A series of thin films made of aligned carbon nanotubes (CNTs) embedded in a polyimide substrate was designed, fabricated and used for the first time to accelerate protons and C ions by interaction with a sub-nanosecond, high power laser beam (600 J energy and 300 ps pulse width) with peak intensity of about 3 × 1016 W/cm2 on target. Each target was 5 μm thick, and the composite material contained CNTs aligned in different directions in the substrate. The results obtained from the analysis of a Thomson Parabola spectrometer, and of the spots imprinted by ions on a series of PM355 nuclear track detectors, indicate high energies (up to 3 MeV for protons and 9 MeV for C ions) and a marked infl…
Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation.
2012
Linac4 accelerator of Centre Européen de Recherches Nucléaires is under construction and a RFdriven H− ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended opera…